A Universal Well-Calibrated Algorithm for On-line Classification
نویسنده
چکیده
We study the problem of on-line classification in which the prediction algorithm, for each “significance level” δ, is required to output as its prediction a range of labels (intuitively, those labels deemed compatible with the available data at the level δ) rather than just one label; as usual, the examples are assumed to be generated independently from the same probability distribution P. The prediction algorithm is said to be “well-calibrated” for P and δ if the long-run relative frequency of errors does not exceed δ almost surely w.r. to P. For well-calibrated algorithms we take the number of “uncertain” predictions (i.e., those containing more than one label) as the principal measure of predictive performance. The main result of this paper is the construction of a prediction algorithm which, for any (unknown) P and any δ: (a) makes errors independently and with probability δ at every trial (in particular, is well-calibrated for P and δ); (b) makes in the long run no more uncertain predictions than any other prediction algorithm that is well-calibrated for P and δ; (c) processes example n in time O(logn).
منابع مشابه
Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملUniversal Algorithm for Trading in Stock Market Based on the Method of Calibration
We present a universal method for algorithmic trading in Stock Market which performs asymptotically at least as well as any stationary trading strategy that computes the investment at each step using a continuous function of the side information. In the process of the game, a trader makes decisions using predictions computed by a randomized well-calibrated algorithm. We use Dawid’s notion of ca...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 5 شماره
صفحات -
تاریخ انتشار 2003